On the Frame Properties of System of Exponents with Piecewise Continuous Phase

Show more

References

[1] R. Paley and N. Wiener, “Fourier Transforms in the Complex Domain,” American Mathematical Society, Providence, 1934.

[2] N. Levinson, “Gap and Density Theorems,” American Mathematical Society, Providence, 1940.

[3] R. M. Young, “An Introduction to Non-Harmonic Fourier Series,” Springer, Berlin, 1980, p. 246.

[4] A. M. Sedletskii, “Classes of Analytic Fourier Transformations and Exponential Approximations,” Fizmatlit, Moscow, 2005.

[5] Ch. Heil, “A Basis Theory Primer,” Springer, Berlin, 2011, p. 534. doi:10.1007/978-0-8176-4687-5

[6] O. Christensen, “An Introduction to Frames and Riesz bases,” Springer, Berlin, 2003, p. 440.

[7] D. L. Russell, “On Exponential Bases for the Sobolev Spaces Over an Interval,” Journal of Mathematical Analysis and Applications, Vol. 87, No. 2, 1982, pp. 528-550.
doi:10.1016/0022-247X(82)90142-1

[8] X. He and H. Volkmer, “Riesz Bases of Solutions of Sturm-Lioville Equations,” Journal of Fourier Analysis and Applications, Vol. 7, No. 3, 2001, pp. 297-307.
doi:10.1007/BF02511815

[9] H. Miklos, “Inverse Spectral Problems and Closed Ex ponential Systems,” Annals of Mathematics, Vol. 162, No. 2, 2005, pp. 885-918. doi:10.4007/annals.2005.162.885

[10] A. M. Sedletskii, “Nonharmonic Analysis,” Functional Analysis, Itogi Nauki i Tekhniki Seremennaya Matematika iee Prilozheniya Tematicheskie Obzory, Vol. 96, 2006, pp. 106-211.

[11] L. H. Larsen, “Internal Waves Incident upon a Knife Edge Barrier,” Deep Sea Research, Vol. 16, No. 5, 1969, pp. 411-419.

[12] S. A. Gabov and P. A. Krutitskii, “On Larsen’s Non stationary Problem,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, Vol. 27, No. 8, 1987, pp. 1184-1194.

[13] P. A. Krutitskii, “Small Non-Stationary Vibrations of Vertical Plates in a Channel with a Stratified Fluid,” USSR Computational Mathematics and Mathematical Physics, Vol. 28, No. 6, 1988, pp. 166-176.

[14] E. I. Moiseev and N. Abbasi, “Basis Property of Eigen functions of the Generalized Gasedynamic Problem of Frankl with a Nonlocal Oddness Condition and with the Discontinuity of the Gradient of Solution,” Differential Equations, Vol. 45, No. 10, 2009, pp. 1452-1456.

[15] V. A. Ilin, “Mixed Problem Describing the Damping Process of a Bar Consisting of Two Sections of Different Density and Elasticity Provided that the Time of Wave’s Passage in Each of These Sections Coincide,” Trudi Ins tituta Matematiki i Mekhaniki Uro RAN, Vol. 269, 2010, pp. 132-141.

[16] I. S. Lomov, “Non-Smooth Eigenfunctions in Problems of Mathematical Physics,” Differential Equations, Vol. 47, No. 3, 2011, pp. 358-365.

[17] L. M. Lujina, “Regularity of Spectral Problems with Additional Conditions at the Inner Points,” Matematiches kie Zametki, Vol. 49, No. 3, 1991, pp. 151-153.

[18] B. T. Bilalov and S. M. Farahani, “On Perturbed Bases of Exponential Functions with Complex Coefficients,” Trans actions of NAS of Azerbaijan, Vol. 56, No. 4, 2011, pp. 45-50.

[19] I. Singer, “Bases in Banach Spaces, I,” Springer, Berlin, 1970, p. 673. doi:10.1007/978-3-642-51633-7

[20] I. T. Hochberg and A. S. Markus, “On Stability of Bases of Banach and Hilbert Spaces,” Izvestiya Akademii Nauk Moldavskoj SSR, No. 5, 1962, pp. 17-35.

[21] B. T. Bilalov and T. R. Muradov, “On Equivalent Bases in Banach Spaces,” Ukrainian Mathematical Journal, Vol. 59, No. 4, 2007, pp. 551-554.
doi:10.1007/s11253-007-0040-1

[22] B. T. Bilalov, “Bases from Exponents, Cosines and Sines Being Eigen Functions of Differential Operators,” Differential Equations, Vol. 39, No. 5, 2003, pp. 1-5.

[23] B. T. Bilalov, “Basicity of Some Systems of Exponents, Cosines and Sines,” Differential Equations, Vol. 20, No. 1, 1990, pp. 10-16.

[24] B. T. Bilalov, “On Isomorphism of Two Bases,” Funda mentalnaya i Prikladnaya Matematika, Vol. 1, No. 4, 1995, pp. 1091-1094.